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Hysteresis and nonlinear detuning in a 
spatial-resonance phenomenon 
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The experimental work of Franklin, Price & Williams (1973) shows that for 
moderately large driving amplitudes there are features of spatial resonance that 
are not predicted by the model representation of Mahony & Smith (1972). We 
here derive an alternative model, which remains valid for moderately large 
driving amplitudes, and we are able to obtain a theoretical description of both 
hysteresis and nonlinear detuning of the low frequency wave response. An ex- 
periment in which surface waves were generated by a sinusoidal pressure field 
a t  the free surface (and which corresponds almost exactly to the theoretical 
problem) was conducted in order to test these predictions. 

1. Introduction 
Spatial resonance is a term which describes a strong interaction between two 

classes of waves, these having related modal shapes but quite disparate fre- 
quencies. In  their recent theoretical paper, Mahony & Smith (1972) put forward 
a model explaining the onset of low frequency waves in a system when high 
frequency waves are driven at a frequency close to resonance. The neutral- 
stability curve for this phenomenon (that is, the relationship between the driving 
force and frequency required to excite waves with zero growth rate) was ex- 
perimentally checked by Huntley (1972) and Franklin, Price & Williams (1973); 
in both experimental configurations the agreement between theory and ex- 
periment was quite good. The latter experiments, however, brought to light two 
interesting features which occur at  moderately large driving amplitudes. 

First, the theory predicts a neutral-stability curve with an asymptote at the 
resonance frequency whereas the experiments of Franklin, Price & Williams 
give a neutral-stability curve which remains finite at the resonance frequency. 
These are sketched in figure 1. Second, for constant drive and slowly varying 
frequency the steady-state amplitude of the low frequency wave exhibits 
hysteresis; this is illustrated in figure 2. 

In  the appendix to their paper, Mahony & Smith give an intricate argument 
showing that the presence of harmonics of the forced high frequency wave could 
explain the frequency shift of the neutral-stability curve. In  this paper we 
implicitly represent such harmonics by allowing the high frequency response to 
have soft-spring behaviour, and we obtain the result that the neutral-stability 
curve asymptotes to the nonlinear resonance frequency. 
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26 F L M  61 



402 I .  Huntley and R. Smith 

0 I 2 3 4 

Frequency above resonance (arbitrary units) 

FIGURE 1. Curves showing the threshold of stability. -, theory; -.-.-, experiment. 
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FIGURE 2. Experimental curve showing the low frequency wave amplitude. 

According to the present theory the energy fed into the low frequency waves 
depends on the intensity of the high frequency waves in a frequency band about 
resonance. The presence of a strong low frequency wave induces a frequency 
splitting of the high frequency waves, and if several of these frequencies were 
in the relevant band then the energy fed into the low frequency waves would 
differ markedly from the energy fed in the absence of strong low frequency waves. 
Hence it is conceivable that viscous damping would preclude the onset of small 
amplitude, low frequency waves, yet if strong waves were already established 
they could persist. Mahony & Smith include three high frequency waves but do 
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not predict hysteresis; here we permit an arbitrary amount of frequency splitting 
and hysteresis is predicted. 

In  order to test quantitatively the theoretical predictions it would be necessary 
either to carry out theoretical calculations for the shallow-water experiment of 
Franklin, Price & Williams or else to perform an experiment on the deep-water 
situation studied by Mahony & Smith. Here we choose the latter, and the results 
of these experiments together with a comparison with the theoretical predictions 
are given in $ 6 .  

2. Model equations 
Schematically we combine the equations of motion and boundary conditions 

for a weakly damped, forced, nonlinear system into a single equation for (say) 
the velocity potential u(x, t )  : 

(w, u,,+Lu) = (v, (Mu), +Nu + 4Q.B COB wt).  (1) 

Here ( ) denotes the inner product (which would usually be the L, integral 
inner product) for some Hilbert space in which L is a linear self-adjoint operator, 
v is an arbitrary element in the domain of L,  M is a linear operator representing 
dissipation, N represents the weak nonlinearities and 4QB is the driving 
amplitude. 

In  the theory of Mahony & Smith, the velocity potential of the wave motion 
is represented by 

(2) u = {( Q0 efut  + @ + e,i(u+r)t + @- ec(u-g)t) X(x) + 7 e i d  Y ( x )  + *}, 
where o and u denote the high and low frequencies, * denotes the complex 
conjugate of each term inside the bracket, 7, (Do, @+ and @- are slowly varying 
functions of time, and the modal shapes X ( x )  and Y(x) are normalized solutions 
of the linear eigenvalue problems 

( D ,  - QZX + LX)  = 0, 

( D ,  - f9Y+LY)  = 0 

(that is, they are free modes of the undamped linear system). 

integral, not a pointwise sense) by 
As a consequence of ( 2 ) ,  the dissipation term in (1) can be represented (in an 

- M u  = {2v( <Do e”t + @+ ei(u+c)t + @ - ei(w-r)t) X(x) + 2v’7 e id  Y (x) + x1 + *}, (3) 

where xi will be used to represent terms whose time or space structure is such 
that they play no role in the interactions. If we retain only quadratic non- 
linearities, we can represent the nonlinear term in (1) by 

-Nu = {2uB( Q0 @E + Q,$ @+) Y eid  + 2Sh(  a-7 eiut + Q, Or ei(O+”)t) X 

+ 2Qa*( @+y* eiut + O0q* ei(u-r)t) X + x2 + *I, (4) 

where we have already used the Mahony & Smith assumptions about the modal 
shapes, replacing X2 and XY by Y and X respectively. Here v and v’ are real 

26-2 
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constants and a and /3 are complex constants all dependent on the modal shapes 
X and Y .  For the problems studied by Mahony & Smith, Huntley and Franklin, 
Price & Williams the coupling constants a and /3 are real and positive; to simplify 
the subsequent analysis we therefore assume that this is so. 

We are now in a position to recover trivially Mahony & Smith’s equations. 
Setting v E Y in (1) and restricting attention to terms with time dependence 
eiCt gives us 

Since 9 is a slowly varying function of time we neglect the final two terms in 
this equation to obtain equation (14d) of Mahony & Smith. Likewise, setting 
v = X and restricting attention to terms with time dependence eiwt, ef(w+u)t and 
ei(G’-u)t gives us equations (14a) ,  (14b)  and ( l a c )  of Mahony & Smith, the only 
assumption being that both a and Iw- l2I are small compared with s1. 

In the above theory it is implicit that the side-band frequencies w _ + a  are 
not strongly excited, since otherwise the ignored nonlinear terms TO+ and T*@- 
would drive significant amounts of the side bands w f 2a,  which in turn would 
drive other side bands. Thus it is natural to attribute features such as hysteresis, 
which occur for moderately high driving amplitudes, to this cascade of side- 
band frequencies. 

A generalization of the representations ( 2 ) ,  ( 3 )  and ( 4 )  that can represent a 
side-band cascade is 

q, + v’q = ip(o0@T + @: @+) + (i/a) (Bqt, - v’qt). 

24 = f(t) X(X) + g(t)  Y(X), (5) 

-MU = 2vfX+2v‘gY+x3, (6) 

- NU = o;~(p) Y + 2 a a ( j g )  x + 2 4 f 3 )  x + 2493) Y + x4. (7) 

It is feasible that, although the interactions between the two classes of waves are 
weak, the individual waves are sufficiently nonlinear that there are strong self- 
interactions. For the particular experiments being modelled here the resonant 
bandwidths are so narrow that despite the small amplitudes of the waves the 
self-interactions lead to nonlinear resonance frequency shifts that are comparable 
with the resonant bandwidths. Thus in (7) we have included those cubic terms 
with the correct modal shape, which thus correspond to the self-interactions. 

Using (1) we can now derive the following coupled ordinary differential 
equations: 

ftt +ay+ 2vft + 2aafg + 2hf3 = 4 Q { X ,  B )  cos wt, 

g,, + a2g + w g ,  + cpp+ 2Kg3 = 0, 
(8) 

(9) 

which we study further in $3. 

3. Multiple time scales 
In order to do a systematic analysis of the model equations (8) and (9) we 

must specify the relative sizes of the frequencies s1, a, v,  v‘, hfz/sl and Kg2/fT.  The 
corresponding sizes for Iw - a], f ,  g and B then follow from the fact that we are 
concerned with such features as the neutral-stability curve. To describe the 
known examples of spatial resonance it sufices to introduce two independent 
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N 

Authors r7 V’ 

Huntley (1972) 0.02 0.001 
Franklin, Price & Williams (1973) 0.004 0.003 
Huntley & Smith (1973) 0.005 0.004 

TABLE 1 

small parameters 3 = u/f2 and Y”’ = v‘/u (see table l), and to scale the other terms 
via 

A 3 ( w -  a)/v, v” = v / v ,  x = hv’/Q, 2 = K v / V ’ ,  

Equations (8) and (9) then become 

f2-Ttt +f+ 2ii(v”Q-lft + ~ f g  + IF}  = 43B cos (Qt  + cat), 
Cr-2gtt + s” + 2Y”’{u-l& + &3p + xs”> = 0. 

(10) 

(11) 

For simplicity, we shall restrict our attention to these particular equations but 
we recall that several assumptions were used in deriving the model equations ( 8 )  
and ( Q ) ,  and although these assumptions are justified for the known examples of 
spatial resonance, it is possible to envisage circumstances in which other scalings 
would be required. 

We shall use a multiple time scales approach to solve (10) and (1 1) (Cole 1968, 
chap. 3), and so we put 

8 = at, T = at, T = v’t. 

Physically, Z then corresponds to the time scale of the forced high frequency 
oscillations, T to that of the free low frequency oscillations and T to the evolution 
scale of any instabilities (that is, the time taken to reach a steady state). We now 
formally put 

and regardfand s“ as functions of the three independent variables t”, T and T .  
We put f = foo -f qf10 + V’fOl+ CV’fil+ . . ., 

g = g, + ug,, + v’gol + uv’g11+ . . . , 
where we have dropped the superscript tilde since for the rest of the theoretical 
calculations we shall be working exclusively with the scaled terms. 

The leading terms of (10) and (11) are now ( P / 8 t 2  + l)foo = 0 and i32g00/8t2 = 0. 
Rejecting the possibility that goo grows linearly in the fastest time variable 
(since g is proportional to the amplitude of the low frequency mode) we have 

foo = a cos (t + AT) + b sin (t + AT), 

Y, = goo(7, T), 
where a and b are independent oft. 
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The next pair of equations presenting any new structure is 

a2 a (g + l)fio = - 2 =too - 2v at&, - 2afmgoO - 2h& + 4B cos (t + AT), 

a2q2,/at2 = - (a2 /a++ 1) goo. J 
We reject the possibility that g2, grows quadratically (or even linearly) on the 
fastest time scale, and it follows that 

goo = C(T) COS (7 + 8(T)). (14) 

The solution for fi0 grows linearly on the time scale t unless the inhomogeneous 
terms in (13) satisfy the non-secularity conditions 

(15) 
8a/ar + va + Ab - abg,, - @b(a2 + b2) = 0, 

&/a7 + vb - Au + aqoo + 2ha(u2 + b2) = 2B. 

It can be shown that when hB2/v3 is not large the solution of these equations 
tends exponentially fast (at the rate e--ur) to a solution with period 2n. For the 
experiment described in 5 6, this merely tells us that when the system is turned 
on the transients disappear on a time scale of 1 s. 

I 

Finally, we need to consider the v"' coefficient in (1 1): 

The condition that g,, cannot grow quadratically on the fastest time scale 
implies that gol must satisfy 

and the condition that go, cannot grow linearly on the middle time scale is that 

) (16) 
8c/aT + c - @(sin (T + 8) coefficient of (a2 + b2))  = 0, 

aepT + (/3/4c) (cos (T + 6 )  coefficient of (a2 -I- b2)) -  KC^ = 0, 

where for algebraic convenience we have assumed that a and b are the strictly 
periodic solutions of (15). 

4. Onset of instability 

to obtain the familiar response curve for a soft spring: 
When the low frequency wave amplitude c(T) is negligible, we can solve (15) 

2B = A[v2 + ($hA2 - A),]*, (17) 

where A denotes the steady value of (a2+ b2)4. 

sented as a perturbation about the steady solution: 
During the onset of any instability, the periodic solution of (15) can be repre- 

A (  1 + C Z )  (V + i[A - 2AA2]) 
a+ib = 

I v + ~ ( A - $ U ~ ) ~  2 
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and to first order in c we find that x satisfies the equation 

dxldr + vz - iAz + ghiA2(22 + z*) = - ia COS(7 + 8). 

407 

After a straightforward but lengthy calculation, we find that the sin (r + 8 )  co- 
efficient of the periodic solution for z has real part 

2va(A - $hA2) 
4va + {(A - QhA2) (A - &I2) + v2 - 1}2 * 

To first order in c, the sin (7 + 8) coefficient of a2 + b2 is simply equal to 2A2c times 
this expression, and so (16) becomes 

A 2 v ~ P ( A  - $AA2) 
4v2+{(A-QhA2) ( A - & 4 2 ) + v 2 -  1}2 

Thus the amplitude of the low frequency wave either grows or decays expo- 
nentially fast depending on whether the sound intensity A2 exceeds or is less 
than the critical value A: which satisfies the implicit equation 

4v2 + {(A - $A@) (A - ih.4:) + v2 - 1}2 
ua/3(A - @A:) 

A: = 

We note that the presence of the h terms means that the neutral-stability 
curve has an asymptote at the nonlinear resonance frequency A = @A:. 

5. Hysteresis 
We define a function S via 

CS = ),@{sin (7 + 8) coefficient of (a2 + b2)}, (19) 

where a and b are the periodic solutions of (15). In  terms o f S  we can now rewrite 
(16) as 

The condition for onset of instability is that S > 1 at c = 0,  and the wave ampli- 
tude will continue to grow until S is reduced to the value unity. If the driving 
frequency SZ + Au or the driving amplitude B is then gradually changed, c will 
adjust so that S = 1 again. During this adjustment, the perturbation %' of  the 
low frequency wave amplitude away from its steady value satisfies 

dcldT + C( 1 - S )  = 0. 

aqaT - as lac  = o ( e )  
and decays exponentially fast provided that aslac < 0. If, however, this is 
violated at  some stage, there will be a rapid increase in the value of c until the 
next root of S = 1. 

It is noteworthy that the abrupt transitions necessarily increase the value of c. 
Thus, at  one particular setting of drive and frequency, there could be more than 
one stable solution for c; the lower branch would be obtained if the drive was 
suddenly switched on (so that c was initially infinitesimal), and the higher branch 
would be obtained either by slowly reducing the drive from some large value or 
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FIGURE 3. Theoretical hysteresis curves. -, stable steady solutions at 
constant drive ; - - - - , unstable steady solutions at constant drive. 

else by changing the frequency from a value at  which there was only one stable 
solution for c. 

Hysteresis has only been observed experimentally a t  frequencies well above 
resonance and at sound intensities such that the nonlinear frequency shift terms 
in (15) are dominated by the A terms. Thus it is natural to assume that the cubic 
nonlinearities do not play a vital role in hysteresis, and for algebraic simplicity 
we shall ignore them. The solution to (15) is then 

a + ib = exp [ - v~ +  AT- ac  sin^)] 

where the constant of integration is chosen to ensure a periodic solution, and 
without loss of generality we have ignored the phase shift 8. A second integration 
is required to determine the function S (which in the absence of the cubic non- 
linearities is proportional to aB2). 

Figure 3 shows the relationship between the dimensionless quantities ac, A 
and apB2 which holds when v” has the value relevant to the experiments described 
in 0 6; these curves were determined numerically by Mr T. Sprinks at the Uni- 
versity of Essex. (For large values of A and ac we can derive asymptotic expansions 
for a and b and hence for a/3B2. These analytical expressions, however, are 
extremely complicated and merely provide a check on the accuracy of the 
numerical quadratures.) For A > 3 it can be seen that the constant-drive response 
curves have the overturning that is characteristic of hysteresis. 

6. Experimental investigation 
A deep rectangular tank was constructed and was filled with water to within 

3.81 cm of the lid, the air space so formed resembling an organ pipe. When this 
resonance chamber was excited near an acoustic resonance frequency, a standing 
surface water wave could be generated. This water wave was of very much lower 
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FIGWRE 4. Diagram of experimental apparatus. (1) Loudspeaker driving unit, (2) conical 
coupler, (3) resonance chamber, (4) microphone, (5)  water. 

frequency than the acoustic wave (typically by a ratio 1 : 200), and had a wave- 
length half that of the acoustic wave. 

We here aim to check two predictions of the previous theory: the expression 
(18) for the neutral-stability curves, and the general shape of the water-wave 
response curves given in figure 3. In  order to determine the parameters A and v, 
we shall also make use of (17). 

6.1. Apparatus 
The apparatus, which is shown diagrammatically in figure 4, was a rectangular 
tank (constructed from 8 in. Perspex sheets) with internal dimensions: length, 
60.5 em; depth, 60.5 om; breadth, 10.0 em. All joints were glued except those at  
the top, the lid being sealed with a silicone rubber preparation and then screwed 
down. The 6in. loudspeaker was mounted on a central baffle in a padded box 
and connected to the 3.81 cm deep resonance chamber by a conical polythene 
funnel passing through a pin. hole drilled in the end face of the tank. At the 
opposite end of the chamber a 1 in. crystal microphone insert was flush mounted 
into the end wall. The loudspeaker was driven by the amplified signal from 
a stabilized oscillator, and an electronic counter was used to record the working 
frequency correct to within 0.05Hz. The acoustic field was detected by the 
crystal microphone in the end wall and the resulting signal displayed on an 
oscilloscope. This microphone was later calibrated against a 1 in. condenser 
microphone using a Briiel & Kjaer Precision Sound Level Meter Type 2203. The 
water-wave amplitude was measured using a capacitance probe mounted on the 
lid of the tank, the resulting signal being displayed on the (double-beam) oscillo- 
scope. This was later calibrated statically by noting the output voltage from the 
probe as the water level was changed. Thus although the probe was being used 
outside its linear range, a calibration was available for all wave heights en- 
countered. 

6.2. Measurement of basic parameters 

The acoustic resonance frequencies were determined by noting the frequencies 
a t  which the microphone output rose to a maximum as the driving frequency was 
varied a t  constant (low) power input. Initial experiments showed that the system 
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T 'Oo0 

-- 100 

I l l 1  

Parameter 

2nla (s) 
UP' (s-1) 
v (s-1) 
a (s-1) 

Value 

0.613 
0.043 
20.20 
1880 

TABLE 2. Experimental values of the parameters 2n/a, d', v and L2 

was highly sensitive to temperature changes, and so throughout the experiments 
the appropriate resonance was determined for each run and the results compared 
through the use of the parameter A. 

Mahony & Smith proposed that the value of v, the logarithmic decay rate for 
the acoustic mode, should be supplied from experiments. This was done by plot- 
ting the frequency response curve and fitting it to (17). Thus the variation in 
the acoustic response was measured as a function of frequency (for constant low 
input power), and (17) was then fitted to the results by matching the maximum 
value of A2 and performing a least-squares calculation to yield v. The agreement 
between these two curves is shown in figure 5. 

The resonance frequency and decay rate of the water wave were measured 
in two ways. The wave was either excited acoustically (that is, by the mechanism 
of spatial resonance) or manually (using a plunger), and its period 2n/a and decay 
rate av"' were measured over a large number of cycles using a stop-watch. These 
figures, together with the value of v and Q, are given in table 2. 
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6 -3. Neutral -stability curve 

In  the present experiments the growth rates were sufficiently small to enable 
a direct measurement of A,  to be made. Thus, having selected a working fre- 
quency, the driving amplitude B was slowly increased until a water wave was 
just discernable from the oscilloscope trace. The value of A corresponding to 
this value of B was then noted as A, for the frequency under consideration. This 
process was then repeated for all the required frequencies and hence the neutral- 
stability curve was built up. 

6.4. Hysteresis curves 
Hysteresis in the water-wave amplitude can be observed in two ways: either 
by keeping the drive constant and slowly varying the frequency, or by keeping 
the frequency constant and slowly varying the drive. For ease of comparison with 
the previous theory, we consider here only the former method. 

For each run, the input power was held constant at  a certain value and A was 
increased in steps by adjusting the driving frequency. After a pause to ensure that 
there was a steady state, the surface displacement was noted from the capacitance 
probe oscilloscope trace. Eventually avalue of A was reached at which the surface- 
wave amplitude fell to zero. Starting from this value, readings were now taken 
as A was decreased to a lower limit at which the surface-wave amplitude was 
again zero. 

7. Comparison of experimental and theoretical results 
To plot the theoretical neutral-stability curve we require the experimental 

value of the constant A. This would normally be obtained from (17) (after 
plotting a frequency response curve), but unfortunately the large surface wave 
made it impossible to determine A with any accuracy. Thus a least-squares fit 
was performed on the experimental neutral-stability data, and the value x = - 1.58 x lo-* obtained from this. This is consistent with a tentative evalua- 
tion as described above. The theoretical and experimental neutral-stability 
curves are given in Sgure 6. 

Figure 7 shows the experimental hysteresis curves for several values of the 
drive B, the value of a being obtained from Mahony & Smith’s equations (13) 
and (14). [We note here an error in the paper by Mahony & Smith: the value of 
/3 is given incorrectly and should be, using their notation, 

This, of course, slightly alters the theoretical values of ap quoted by Franklin, 
Price & Williams.] 

The agreement between theory and experiment is thought to be quite satis- 
factory, answering in main part the questions raised by Franklin, Price & 
Williams. 
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FIGURE 6. Theoretical and experimental neutral-stability curves. 
-, theory; 0, experiment. 
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FIGTJRE 7. Experimental hysteresis curves. 0, increasing frequency; 
, decreasing frequency. 
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